Search for Tau Sneutrino particles in the e+µ final states at DØ

Xuebing Bu

University of Science and Technology of China

On behalf of the DØ collaboration

Tevatron

- World's largest
 proton-antiproton collider
- Excellent performance (peak lumi. ~ 3.50E+32)

~6 fb^{-1} data on tape

DØ detector

- Electrons: $|\eta| < 3.0$
- Muons: $|\eta| < 2.0$
- Silicon tracking: $|\eta| < 3.0$
- Calorimetry: $|\eta| < 4.2$
- High data taking efficiency ~ 90%
- Well-understood detectors and mature analysis tools

Phenomenology Motivation

SUSY new parity

partially R-parity violation (RPV) *i.e. non-simultaneous* L and B violation in general super-potential

$$W_{\mathcal{R}_{p}} = \frac{1}{2} \varepsilon_{ab} \lambda_{ijk} \hat{\mathcal{L}}_{i}^{a} \hat{\mathcal{L}}_{j}^{b} \hat{\mathcal{E}}_{k} + \varepsilon_{ab} \lambda_{ijk}' \hat{\mathcal{L}}_{i}^{a} \hat{Q}_{j}^{b} \hat{D}_{k} + \frac{1}{2} \varepsilon_{\alpha\beta\gamma} \lambda_{ijk}'' \hat{U}_{i}^{\alpha} \hat{D}_{j}^{\beta} \hat{D}_{k}^{\gamma} + \varepsilon_{ab} \delta_{i} \hat{\mathcal{L}}_{i}^{a} \hat{H}_{2}^{b}$$

Phenomenology:

- + neutrino-oscillation + stable Proton
- + scalar sneutrino resonance production and LFV decay

The Feynmann digram of sneutrino eµ resonance production at Tevatron:

$$d(p_1) \longrightarrow \widetilde{v_3} \bigwedge^{e^-(p_3)}$$

$$d(p_2) \longrightarrow \widetilde{v_3} \bigwedge^{e^-(p_4)}$$

The cross section of the signal only depends on the third generation sneutrino mass and the LQD and LLE couplings:

$$\hat{\sigma}_{e\mu} \propto (\lambda_{311}^{'})^2 \times (\lambda_{312})^2 \cdot \frac{1}{|\hat{s} - M^2 + i\Gamma M|^2}$$

where the total width of the sneutrino can be written as:

$$\Gamma = [3 \cdot (\lambda'_{311})^2 + 2 \cdot \lambda^2_{312}] \cdot \frac{M}{16\pi}$$

The parameter constraints from LEP are:

$$\lambda_{311}^{'} \leq 0.12, \quad \lambda_{312} \leq 0.07, \quad for M \equiv M_{\tilde{\nu}_{\tau}} \geq 100 \; GeV$$

Signal characteristics

- M = 100 GeV

- High pT leptons (~0.5*Mass)
- Electron and muon are almost back-to-back
- Clear mass peak
- No missing transverse energy

Event selection

Electrons

- p_T>30 GeV
- $|\eta| < 1.1$
- Matched with a track
- Isolated in the calorimeter
- EM shower

Muons

- p_T>25 GeV
- $|\eta| < 2.0$
- Matched with a track
- Isolated in both calorimeter and tracker

Major backgrounds

- Physical background:
 - $-Z/\gamma^*->TT$
 - WW,WZ,ZZ
 - ttbar
- Instrumental background:
 - W+jet/γ
 - $-Z/\gamma^*$ ->ee,µµ
 - multijet

Event selection cont...

- The two leptons are away from each other with dR>0.2 and required from the same primary vertex;
- To reduce the ttbar contamination, veto the events with at least one pT>25GeV jet;
- To reduce the WW and ttbar contamination, veto the events with missing transverse energy
 20GeV that is not aligned or anti-aligned in azimuth with the muon.

of events after selection

Process	# of events
Ζ/γ*	83 ± 3
diboson	46 ± 2
W+jet/γ	13 ± 2
ttbar	3 ± 0
Total background	145 ± 4
data	143

Final events distributions

95% C.L. limits

- (1) A factor of 2 improvement by comparison with the 1 fb^{-1} DØ publication results (Phys. Rev. Lett. 100, 241803 (2008)).
- (2) The limits are significantly improved by comparison with LEP results (0.07x0.12 at M=100GeV).

300

Summary

- We presented a search for R-parity violating (RPV) Sneutrino via the e+ μ final states in 4.1 fb^{-1} of DØ Run II data.
- We set 95% C.L. limits on the production cross section times branching ratio and RPV couplings for different Sneutrino masses.
- For the near future, we will keep tuning and add more available data.

back-up

1 fb-1 published Run IIa results

- Phys. Rev. Lett. 100, 241803 (2008)

$d\Phi$ (met, μ)

